Abstract

We study work extraction (defined as the difference between the initial and the final energy) in noninteracting and (effectively) weakly interacting isolated fermionic quantum lattice systems in one dimension, which undergo a sequence of quenches and equilibration. The systems are divided in two parts, which we identify as the subsystem of interest and the bath. We extract work by quenching the on-site potentials in the subsystem, letting the entire system equilibrate, and returning to the initial parameters in the subsystem using a quasistatic process (the bath is never acted upon). We select initial states that are direct products of thermal states of the subsystem and the bath, and consider equilibration to the generalized Gibbs ensemble (GGE, noninteracting case) and to the Gibbs ensemble (GE, weakly interacting case). We identify the class of quenches that, in the thermodynamic limit, results in GE and GGE entropies after the quench that are identical to the one in the initial state (quenches that do not produce entropy). Those quenches guarantee maximal work extraction when thermalization occurs. We show that the same remains true in the presence of integrable dynamics that results in equilibration to the GGE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.