Abstract

Let $V$ be a complex vector space with basis $\{x_1,x_2,\ldots,x_n\}$ and $G$ be a finite subgroup of $GL(V)$. The tensor algebra $T(V)$ over the complex is isomorphic to the polynomials in the non-commutative variables $x_1, x_2, \ldots, x_n$ with complex coefficients. We want to give a combinatorial interpretation for the decomposition of $T(V)$ into simple $G$-modules. In particular, we want to study the graded space of invariants in $T(V)$ with respect to the action of $G$. We give a general method for decomposing the space $T(V)$ into simple $G$-module in terms of words in a particular Cayley graph of $G$. To apply the method to a particular group, we require a surjective homomorphism from a subalgebra of the group algebra into the character algebra. In the case of the symmetric group, we give an example of this homomorphism from the descent algebra. When $G$ is the dihedral group, we have a realization of the character algebra as a subalgebra of the group algebra. In those two cases, we have an interpretation for the graded dimensions of the invariant space in term of those words. Soit V un espace vectoriel complexe de base $\{x_1,x_2,\ldots,x_n\}$ et $G$ un sous-groupe fini de $GL(V)$. L'algèbre $T(V)$ des tenseurs de $V$ sur les complexes est isomorphe aux polynômes à coefficients complexes en variables non-commutatives $x_1, x_2, \ldots, x_n$. Nous voulons donner une décomposition de $T(V)$ en $G$-modules simples de manière combinatoire. Plus particulièrement, nous étudions l'espace gradué des invariants de $T(V)$ sous l'action de $G$. Nous présentons une méthode générale donnant la décomposition de $T(V)$ en modules simples via certains mots dans un graphe de Cayley donné. Pour appliquer la méthode à un groupe particulier, nous avons besoin d'un homomorphisme surjectif entre une sous-algèbre de l'algèbre de groupe et l'algèbre des caractères. Pour le cas du groupe symétrique, nous donnons un exemple de cet homomorphisme qui provient de la théorie de l'algèbre des descentes. Pour le groupe diédral, nous avons une réalisation de l'algèbre des caractères comme une sous-algèbre de l'algèbre de groupe. Dans ces deux cas, nous avons une interprétation des dimensions graduées de l'espace des invariants en terme de ces mots.

Highlights

  • IntroductionLet V be a vector space over C with basis {x1, x2, . . . , xn} and G a finite subgroup of GL(V ),

  • Let V be a vector space over C with basis {x1, x2, . . . , xn} and G a finite subgroup of GL(V ), T (V ) = C ⊕ V ⊕ V ⊗2 ⊕ V ⊗3 ⊕ · · · ≃ C x1, x2, . . . , xn is the ring of non-commutative polynomials in the basis elements where we use the notation V ⊗d =V ⊗ V ⊗ · · · ⊗ V

  • The subalgebra we use in the case of the symmetric group is the Solomon’s descent algebra, that will make the bridge between words in a particular Cayley graph in those generators and the decomposition of T (V ) into simple Sn-module

Read more

Summary

Introduction

Let V be a vector space over C with basis {x1, x2, . . . , xn} and G a finite subgroup of GL(V ), . To compute the coefficient of qd in the Hilbert-Poincareseries of T (V )G, it suffices to look at the multiplicity of the trivial in (V ⊗d) At this point, since there is not a general relation between the group algebra and the character ring, we are only able to treat some examples that we decided to present here and the method used gives rise to objects that are a priori not natural in that context. The subalgebra we use in the case of the symmetric group is the Solomon’s descent algebra, that will make the bridge between words in a particular Cayley graph in those generators and the decomposition of T (V ) into simple Sn-module. We apply our general method in the case of the dihedral group Dm and study in section 4.3 the particular case of the invariant algebra T (V )Dm when V is the geometric module and give a closed formula for the Hilbert-Poincareseries of T (V )Dm

Cayley graph of a group G
Symmetric group Sn
Partitions and tableaux
Simple Sn-modules
Solomon’s descent algebra of Sn
General method for Sn
Dihedral group Dm
Simple Dm-modules
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.