Abstract

While the minimum aberration criterion is popular for selecting good designs with qualitative factors under an ANOVA model, the minimum $\beta$-aberration criterion is more suitable for selecting designs with quantitative factors under a polynomial model. In this paper, we propose the concept of wordlength enumerator to unify these two criteria. The wordlength enumerator is defined as an average similarity of contrasts among all possible pairs of runs. The wordlength enumerator is easy and fast to compute, and can be used to compare and rank designs efficiently. Based on the wordlength enumerator, we develop simple and fast methods for calculating both the generalized wordlength pattern and the $\beta$-wordlength pattern. We further obtain a lower bound of the wordlength enumerator for three-level designs and characterize the combinatorial structure of designs achieving the lower bound. Finally, we propose two methods for constructing supersaturated designs that have both generalized minimum aberration and minimum $\beta$-aberration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.