Abstract
A technique for word timing recovery in a direct detection optical pulse position modulation (PPM) communication system is described. It tracks on back-to-back pulse pairs in the received random PPM data sequences with the use of a phase locked loop. The experimental system consisted of an AlGaAs laser diode transmitter ( lambda =833 nm) and a silicon avalanche photodiode photodetector, and its used Q=4 PPM signaling at a source data rate of 25 Mb/s. The mathematical model developed to characterize system performance is shown to be in good agreement with the experimental measurements. Use of this recovered PPM word clock, along with a slot clock recovery system described previously, caused no measurable penalty in receiver sensitivity when compared to a receiver which used common transmitter/receiver clocks. The completely self-synchronized receiver was capable of acquiring and maintaining both slot and word synchronizations for input optical signal levels as low as 20 average detected photons per information bit. The receiver achieved a bit error probability of 10/sup -6/ at less than 60 average detected photons per information bit. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.