Abstract
Word sense disambiguation (WSD) is a technique used to identify the correct sense of polysemous words, and it is useful for many applications, such as machine translation (MT), lexical substitution, information retrieval (IR), and biomedical applications. In this paper, we propose the use of multiple contextual features, including the predicate-argument structure and named entities, to train two commonly used classifiers, Naive Bayes (NB) and Maximum Entropy (ME), for word sense disambiguation. Experiments are conducted to evaluate the classifiers' performance on the OntoNotes corpus and are compared with classifiers trained using a set of baseline features, such as the bag-of-words, n-grams, and part-of-speech (POS) tags. Experimental results show that incorporating both predicate-argument structure and named entities yields higher classification accuracy for both classifiers than does the use of the baseline features, resulting in accuracy as high as 81.6% and 87.4%, respectively, for NB and ME.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.