Abstract
Experiments on various word segmentation approaches for the Burmese language are conducted and discussed in this note. Specifically, dictionary-based, statistical, and machine learning approaches are tested. Experimental results demonstrate that statistical and machine learning approaches perform significantly better than dictionary-based approaches. We believe that this note, based on an annotated corpus of relatively considerable size (containing approximately a half million words), is the first systematic comparison of word segmentation approaches for Burmese. This work aims to discover the properties and proper approaches to Burmese textual processing and to promote further researches on this understudied language.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.