Abstract
Burmese is an isolated language, in which the syllable is the smallest unit. Syllable segmentation methods based on matching lead to performance subject to the syllable segmentation effect. This article proposes a word segmentation method with fusion conditions of double syllable features. It combines word segmentation and segmentation of syllables into one process, thus reducing the impact of errors on the syllable segmentation of Burmese. In the first layer of the conditional random fields (CRF) model, Burmese characters as atomic features are integrated into the Burma section of the Barkis Speech Paradigm (Backus normal form) features to realize the Burma syllable sequence tags. In the second layer of the CRFs model, with the syllable marked as input, it realizes the sequence markers through building a feature template with syllables as atomic features. The experimental results show that the proposed method has a better effect compared with the method based on the matching of syllables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.