Abstract

Reaction time data have long been collected in order to gain insight into the underlying mechanisms involved in language processing. Means analyses often attempt to break down what factors relate to what portion of the total reaction time. From a dynamic systems theory perspective or an interaction dominant view of language processing, it is impossible to isolate discrete factors contributing to language processing, since these continually and interactively play a role. Non-linear analyses offer the tools to investigate the underlying process of language use in time, without having to isolate discrete factors. Patterns of variability in reaction time data may disclose the relative contribution of automatic (grapheme-to-phoneme conversion) processing and attention-demanding (semantic) processing. The presence of a fractal structure in the variability of a reaction time series indicates automaticity in the mental structures contributing to a task. A decorrelated pattern of variability will indicate a higher degree of attention-demanding processing. A focus on variability patterns allows us to examine the relative contribution of automatic and attention-demanding processing when a speaker is using the mother tongue (L1) or a second language (L2). A word naming task conducted in the L1 (Dutch) and L2 (English) shows L1 word processing to rely more on automatic spelling-to-sound conversion than L2 word processing. A word naming task with a semantic categorization subtask showed more reliance on attention-demanding semantic processing when using the L2. A comparison to L1 English data shows this was not only due to the amount of language use or language dominance, but also to the difference in orthographic depth between Dutch and English. An important implication of this finding is that when the same task is used to test and compare different languages, one cannot straightforwardly assume the same cognitive sub processes are involved to an equal degree using the same task in different languages.

Highlights

  • Reaction time experiments such as the word naming task are widely used to explore differences between L1 and L2 language processing

  • Spectral analyses were carried out to establish whether, regardless of how fast or slow the naming performance, naming is more automatized and optimally coordinated in the L1 than in the L2, and whether the stronger role of semantics in the semantic categorization condition would lead to less reliance on automatic grapheme-to-phoneme conversion and more attention-demanding semantic processing in naming

  • The present study aimed to investigate the relative contribution of automatic processes and attention-demanding processes in L1 and L2 language production using a standard word naming task and one that required semantic categorization

Read more

Summary

Introduction

Reaction time experiments such as the word naming task are widely used to explore differences between L1 and L2 language processing. Keeping in mind that the contribution of all the different factors involved in naming will be variable across tasks, languages, and participants, the current study aims at clarifying the degree to which automatic and controlled processing play a role in naming from an interaction-dominant perspective. Rather than trying to isolate the factors of interest in L1 and L2 naming, automatic grapheme-to-phoneme conversion and semantic involvement, the current study will use different tasks in which the relative contribution of these processes is assumed to be different. Analyzing the variability of naming latencies (RTs) during the task rather than the overall time it takes to name the words presents the opportunity to look at the relative contribution of automatic (grapheme-to-phoneme conversion) processes and more conscious, attention-demanding processes (semantic involvement) in L1 (Dutch) and L2 (English) word naming. Focusing on the variability of reaction times across a word naming task rather than an overall mean outcome can provide insight into the naming process as it is unfolding, and into the nature of language processing

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call