Abstract

Abstract Given a countably infinite group G acting on some space X, an increasing family of finite subsets Gn , x∈ X and a function f over X we consider the sums Sn (f, x) = ∑ g∈Gnf(gx). The asymptotic behaviour of Sn (f, x) is a delicate problem that was studied under various settings. In the following paper we study this problem when G is a specific lattice in SL (2, ℤ ) acting on the projective line and Gn are chosen using the word metric. The asymptotic distribution is calculated and shown to be tightly connected to Minkowski’s question mark function. We proceed to show that the limit distribution is stationary with respect to a random walk on G defined by a specific measure µ. We further prove a stronger result stating that the asymptotic distribution is the limit point for any probability measure over X pushed forward by the convolution power µ∗n .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.