Abstract

We consider word maps and word maps with constants on a simple algebraic group G. We present results on the images of such maps, in particular, we prove a theorem on the dominance of “general” word maps with constants, which can be viewed as an analogue of a well-known theorem of Borel on the dominance of genuine word maps. Besides, we establish a relationship between the existence of unipotents in the image of the map induced by w∈Fm and the structure of the representation variety R(Γw,G) of the group Γw=Fm/〈w〉.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.