Abstract
AbstractWe study word maps with constants on symmetric groups. Even though there are non‐trivial mixed identities of bounded length that are valid for all symmetric groups, we show that no such identities can hold in the limit in a metric sense. Moreover, we prove that word maps with constants and non‐trivial content, that are short enough, have an image of positive diameter, measured in the normalized Hamming metric, which is bounded from below in terms of the word length. Finally, we also show that every self‐map on a finite non‐abelian simple group is actually a word map with constants from G.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.