Abstract

Multimedia applications such as video and image processing are often characterized as computation intensive applications. For these applications the word-length of data and instructions is different throughout the application. Generating hardware architectures is not a straightforward task since it requires a deep word-length analysis in order to properly determine what hardware resources are needed. In this paper we suggest an automated design methodology based on high-level synthesis which takes care of data word-length and interconnection resource cost in order to generate area and power efficient fixed-point architectures for DSP applications. Both ASIC and FPGA technologies are targeted. Experimental results show that our proposed approach reduces area by 6% to 42% on FPGA technology and by 9% to 48 % on ASIC compared to previous approaches. Power saving can reach up to 44% on FPGA technology and 36% on ASIC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.