Abstract
This paper presents a word extraction approach based on the use of a confidence index to limit the total number of segmentation hypotheses in order to further extend our online sentence recognition system to perform "on-the-fly" recognition. Our initial word extraction task is based on the characterization of the gap between each couple of consecutive strokes from the online signal of the handwritten sentence. A confidence index is associated to the gap classification result in order to evaluate its reliability. A reconsideration process is then performed to create additional segmentation hypotheses to ensure the presence of the correct segmentation among the hypotheses. In this process, we control the total number of segmentation hypotheses to limit the complexity of the recognition process and thus the execution time. This approach is evaluated on a test set of 425 English sentences written by 17 writers, using different metrics to analyze the impact of the word extraction task on the whole sentence recognition system performances. The word extraction task using the best reconsideration strategy achieves a 97.94% word extraction rate and a 84.85% word recognition rate which represents a 33.1% word error rate decrease relatively to the initial word extraction task (with no segmentation hypothesis reconsideration).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.