Abstract
Detailed spatial information on the presence and properties of woody vegetation serves many purposes, including carbon accounting, environmental reporting and land management. Here, we investigated whether machine learning can be used to combine multiple spatial observations and training data to estimate woody vegetation canopy cover fraction (‘cover’), vegetation height (‘height’) and woody above-ground biomass dry matter (‘biomass’) at 25-m resolution across the Australian continent, where possible on an annual basis. We trained a Random Forest algorithm on cover and height estimates derived from airborne LiDAR over 11 regions and inventory-based biomass estimates for many thousands of plots across Australia. As predictors, we used annual geomedian Landsat surface reflectance, ALOS/PALSAR L-band radar backscatter mosaics, spatial vegetation structure data derived primarily from ICESat/GLAS satellite altimetry, and spatial climate data. Cross-validation experiments were undertaken to optimize the selection of predictors and the configuration of the algorithm. The resulting estimation errors were 0.07 for cover, 3.4 m for height, and 80 t dry matter ha-1 for biomass. A large fraction (89–94 %) of the observed variance was explained in each case. Priorities for future research include validation of the LiDAR-derived cover training data and the use of new satellite vegetation height data from the GEDI mission. Annual cover mapping for 2000–2018 provided detailed insight in woody vegetation dynamics. Continentally, woody vegetation change was primarily driven by water availability and its effect on bushfire and mortality, particularly in the drier interior. Changes in woody vegetation made a substantial contribution to Australia’s total carbon emissions since 2000. Whether these ecosystems will recover biomass in future remains to be seen, given the persistent pressures of climate change and land use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.