Abstract

With legislation requiring utilities to produce a significant fraction of their electrical energy with renewable fuel supplies, it is anticipated that cofiring biomass in large utility boilers will become increasingly popular. Boilers that are designed to burn pulverized coal (PC) can typically burn woody biomass at up to 5% of the rated heat input. An 800 MW PC-fired unit could, therefore, produce up to 40 MW of renewable energy with biomass co-firing. The generating plant may experience a net capacity de-rating whenever biomass is co-fired. This potential reduction in net plant output may be attributed to reduced boiler efficiency and additional auxiliary power requirements. Biomass fuel handling related auxiliary power requirements are dependent upon the form in which biomass is delivered to the plant. Preparation of woody biomass for co-firing in large PC-fired boilers is typically performed onsite with hammer mills or by off-site processing. For an 800 MW unit, onsite fuel size reduction will usually result in an incremental increase in auxiliary power of 3–4 MW, whereas the use of pre-processed biomass such as wood pellets will require a minimal increase in parasitic load. However, delivered fuel costs for raw wood requiring onsite processing are at least 60% lower than that of densified biomass on a heat input basis. This paper includes an economic comparison of co-firing woody biomass that is processed onsite by direct injection vs. co-firing densified woody biomass by co-milling in a large PC-fired boiler. This comparison will consider delivered fuel costs, capital costs, CO2 emissions and impacts upon boiler efficiency and net heat rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.