Abstract

Individuals that isolate themselves to give birth can use more than one strategy in choosing birth sites to maximize reproductive success. Previous research has focused on the consistency in the use of the same birth-site across years (i.e., spatial fidelity), but individuals alternatively may use similar habitat conditions across years (i.e., habitat fidelity). Using GPS telemetry, we determined whether woodland caribou expressed spatial or habitat fidelity during calving, and evaluated intrinsic and extrinsic factors associated with expressing either type of fidelity. We identified 56 individuals with ≥2 putative birth events, via a movement-based model, across northern Ontario between 2010 and 2014. Individuals were classified as expressing (1) spatial fidelity by comparing sequential calving locations to a random spatial distribution of available calving locations, (2) habitat fidelity using a logistic use model compared to a null (intercept only) model, (3) no fidelity (neither criterion met), or (4) both spatial and habitat fidelity (both criteria met). Across all individuals, 37% expressed no fidelity (36 of 98), 15% expressed only spatial fidelity (15 of 99), 35% expressed only habitat fidelity (34 of 98), and 14% expressed both spatial and habitat fidelity (14 of 98). Older individuals were more likely to express spatial fidelity, whereas lower availability of upland and lowland conifer forests without linear features increased the probability an individual expressed habitat fidelity. Our results indicate that managing for caribou calving needs to consider protecting both specific, known birthing sites, but also broad-scale areas of preferred habitat for calving. Understanding the mechanisms that influence caribou expressing calving fidelity, and associated fitness costs, is crucial for the conservation of the species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.