Abstract

To extend the potential application of ultrasonic treatment in dyeing low-quality wood to improve decorative value, wood veneers were dyed with an ultrasonic assisted dyeing system. The effects of ultrasonic power, dye concentration, dyeing time, and temperature of ultrasonic-assisted treatment on dye-uptake, chromatic value, crystallinity, thermal stability, chemical structure, and microstructure for dyed wood veneer were investigated. The dye-uptake, chromatic value, and dyeing rate were improved by ultrasonic-assisted treatment. The effect was strengthened with an increase in ultrasonic power, dye concentration, and dyeing time and temperature. After ultrasonic treatment, the dyed wood properties such as lignin degradation, crystallization and thermal stability decreased slightly, and part of the wood microstructure such as the pit membrane and parenchyma cells was mechanically damaged. Ultrasonic-assisted treatment enhanced the permeability of wood by creating new fluid channels and sorption sites, and it is believed to be an energy-efficient and environmental wood dyeing technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.