Abstract

BackgroundReplacing non-renewable materials and energy with wood offers a potential strategy to mitigate climate change if the net emissions of ecosystem and technosystem are reduced in a considered time period. Displacement factors (DFs) describe an emission reduction for a wood-based product or fuel which is used in place of a non-wood alternative. The aims of this review were to map and assess DFs from scientific literature and to provide findings on how to harmonise practices behind them and to support coherent application.ResultsMost of the reviewed DFs were positive, implying decreasing fossil GHG emissions in the technosystem. The vast majority of the reviewed DFs describe avoided fossil emissions either both in processing and use of wood or only in the latter when wood processing emissions were considered separately. Some of the reviewed DFs included emissions avoided in post-use of harvested wood products (HWPs). Changes in forest and product carbon stocks were not included in DFs except in a few single cases. However, in most of the reviewed studies they were considered separately in a consistent way along with DFs.DFs for wood energy, construction and material substitution were widely available, whereas DFs for packaging products, chemicals and textiles were scarce. More than half of DFs were calculated by the authors of the reviewed articles while the rest of them were adopted from other articles.ConclusionsMost of the reviewed DFs describe the avoided fossil GHG emissions. These DFs may provide insights on the wood-based products with a potential to replace emissions intensive alternatives but they do not reveal the actual climate change mitigation effects of wood use. The way DFs should be applied and interpreted depends on what has been included in them. If the aim of DFs is to describe the overall climate effects of wood use, DFs should include all the relevant GHG flows, including changes in forest and HWP carbon stock and post-use of HWPs, however, based on this literature review this is not a common practice.DFs including only fossil emissions should be applied together with a coherent assessment of changes in forest and HWP carbon stocks, as was the case in most of the reviewed studies. To increase robustness and transparency and to decrease misuse, we recommend that system boundaries and other assumptions behind DFs should be clearly documented.

Highlights

  • Replacing non-renewable materials and energy with wood offers a potential strategy to mitigate climate change if the net emissions of ecosystem and technosystem are reduced in a considered time period

  • Exclusion of changes in forest and Harvested wood product (HWP) carbon stocks make displacement factor (DF) not subjective to these uncertain and dynamic flows. This may be considered as an advantage, coherent assessment of net greenhouse gas (GHG) emissions of wood use requires that DFs are attached with a consistent assessment of changes in forest and HWP carbon stocks

  • To improve the comparability and understanding on DFs, it should be clear which GHG flows are included in DFs

Read more

Summary

Introduction

Replacing non-renewable materials and energy with wood offers a potential strategy to mitigate climate change if the net emissions of ecosystem and technosystem are reduced in a considered time period. The climate change mitigation potential of wood products needs to be considered comprehensively to include all relevant factors, in particular impacts on forest ecosystems including changes in carbon storages in the trees and soil of forest, GHG emissions due to forest management operations, changes in carbon stock in harvested wood products (HWPs), and potentially avoided emissions when substituting alternative materials and energy (Geng et al 2017a). In order to mitigate climate change by increasing the use of HWPs in place of alternative products, the change in net GHG emissions of ecosystem and technosystem should be negative over a given time horizon. Avoided fossil GHG emissions through substitution and carbon stored in HWPs should be higher than carbon loss in a forest due to increased wood harvesting during a given time frame

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.