Abstract

The cellular structure of wood, which is highly anisotropic along its main growth directions, is responsible for the observed anisotropy in its physical and mechanical properties that depend in a complex manner on the moisture content. Here, we demonstrate that the (1)H NMR spectra of wood from Norway spruce exhibit a strong and characteristic dependence on the direction of the sample relative to the applied magnetic field. By comparing spectra recorded at different magnetic-field strengths, we show that this variation is caused by the magnetic-field distribution created by the anisotropic and inhomogeneous distribution of matter and thereby magnetic susceptibility. On the basis of the observations that (i) the recorded spectral peak predominantly arises from translationally mobile water molecules and (ii) the spectral broadening is large if the long axis of the wood tracheid cells is perpendicular to the magnetic field, we set out to test the hypothesis that it is the susceptibility variation on the tracheid length scale that is responsible for the observed spectral features. To verify this, we numerically calculate in a discrete grid approximation the NMR line shapes obtained in realistic tracheid models, and we find that the calculated NMR line shapes are in good agreement with the corresponding experimental ones. We envisage the application of these findings for revealing the inhomogeneous distribution of water and its molecular properties in wood and wood-based materials at varying degrees of humidity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call