Abstract

The simple design of a high-energy-density device with high-mass-loading electrode has attracted much attention but is challenging. Manganese oxide (MnO2 ) with its low cost and excellent electrochemical performance shows high potential for practical application in this regard. Hence, the high-mass-loading of the MnO2 electrode with wood-derived carbon (WC) as the current collector is reported through a convenient hydrothermal reaction for high-energy-density devices. Benefiting from the high-mass-loading of the MnO2 electrode (WC@MnO2 -20, ≈14.1mg cm-2 ) and abundant active sites on the surface of the WC hierarchically porous structure, the WC@MnO2 -20 electrode shows remarkable high-rate performance of areal/specific capacitance ≈1.56 F cm-2 /45 F g-1 , compared to the WC electrode even at the high density of 20mA cm-2 . Furthermore, the obtained symmetric supercapacitor exhibits high areal/specific capacitances of 3.62 F cm-2 and 87 F g-1 at 1.0mA cm-2 and high energy densities of 0.502 mWh cm-2 /12.2Wh kg-1 with capacitance retention of 75.2% after 10 000 long-term cycles at 20mA cm-2 . This result sheds light on a feasible design strategy for high-energy-density supercapacitors with the appropriate mass loading of active materials and low-tortuosity structural design while also encouraging further investigation into electrochemical storage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.