Abstract

Nine species of Trametes and five other wood inhabiting basidiomycetes, were collected from the indigenous forests of Zimbabwe and analysed for cellulases, ligninases, extracellular phenolases and wood degrading ability for the first time. Cellulase enzyme activities varied widely among the species. After 15 d growth exo-glucanase activity had increased in the majority of species whilst filter paper activity showed the opposite trend, being greatly reduced in all species on day 15 compared to day 10. Endo-glucanase activity was relatively uniform at both sampling times. The fungi were more active against water soluble cellulose derivatives than filter paper cellulase. In all the fungi tested, cellulose activity on filter paper was significantly less than endo- and exo-glucanase activities. The highest cellulase activity was expressed by Cerrena meyenii (683 U mg−1) Phaeotrametes decipiens, Trametes modesta, and T. pocas also expressed relatively high cellulase activity on all types of cellulose tested. All Trametes species tested positive for extracellular phenol oxidases whilst Fomotopsis spragueii and Irpex stereoides tested negative. All but one of the Trametes species in the study were able to degrade two different lignin preparations in tests for lignin degradation. T. menziesii was unable to degrade both lignin preparations although it had tested positive for production of extracellular oxidase. The species in this study degraded hardwood to a greater extent than softwood. Eight of them caused more than 80% dry weight loss of wood blocks during 70 d incubation. Those fungi that expressed high cellulase activity also caused high weight loss on wood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.