Abstract

Developing highly efficient advanced battery deionization (BDI) electrode materials at a low cost is vital for seawater desalination. Herein, a high-efficiency wood-based BDI electrode has been fabricated for seawater desalination, benefiting from the self-supporting three-dimensional (3D) nanoporous structure and rich redox-active sites. The finely tuned rich electrochemical redox active C═O groups on the surface of the wood electrode derived from the facile thermochemical conversion of lignin play a crucial role in the Faradaic cation removal dynamics of BDI. Coupling the 3D wood electrode and a polyaniline-modified wood electrode as the cathode and anode, an all-wood-electrode-based deionization battery has been successfully assembled with a state-of-the-art ion removal capacity of up to 164 mg g-1 in seawater. Our work reported an example of utilizing wood as the BDI electrode via fine-tuning the redox-active sites, demonstrating a novel resource utilization pathway of converting cheap biomass into BDI electrodes for highly efficient seawater desalination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.