Abstract
Real-time monitoring of temperatures over extensive free-form surfaces of precision machines, smart products, and human bodies with a high resolution can provide invaluable information for smart manufacturing, Internet-of-Things, and advanced healthcare. However, traditional rigid thermistors could not be conformally attached on arbitrarily curved surfaces. In this study, a high-resolution flexible graphene thermistor is demonstrated by transforming wood into laser-induced-graphene via ultrafast laser pulses and subsequent transfer to flexible substrates. This thermistor provides a 16-times higher resolution than the state-of-the-art counterparts which was applied to precise temperature monitoring of an electric motor, glass cup, and human hand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.