Abstract
Struvite precipitation is a simple technology for phosphorus recovery from source-separated urine. However, production costs can be high if expensive magnesium salts are used as precipitants. Therefore, waste products can be interesting alternatives to industrially-produced magnesium salts. We investigated the technical and financial feasibility of wood ash as a magnesium source in India. In batch experiments with source-separated urine, we could precipitate 99% of the phosphate with a magnesium dosage of 2.7molMgmolP−1. The availability of the magnesium from the wood ash used in our experiment was only about 50% but this could be increased by burning the wood at temperatures well above 600°C. Depending on the wood ash used, the precipitate can contain high concentrations of heavy metals. This could be problematic if the precipitate were used as fertilizer depending on the applicable fertilizer regulations. The financial study revealed that wood ash is considerably cheaper than industrially-produced magnesium sources and even cheaper than bittern. However, the solid precipitated with wood ash is not pure struvite. Due to the high calcite and the low phosphorus content (3%), the precipitate would be better used as a phosphorus-enhanced conditioner for acidic soils. The estimated fertilizer value of the precipitate was actually slightly lower than wood ash, because 60% of the potassium dissolved into solution during precipitation and was not present in the final product. From a financial point of view and due to the high heavy metal content, wood ash is not a very suitable precipitant for struvite production. Phosphate precipitation from urine with wood ash can be useful if (1) a strong need for a soil conditioner that also contains phosphate exists, (2) potassium is abundant in the soil and (3) no other cheap precipitant, such as bittern or magnesium oxide, is available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.