Abstract

This paper deals with the Wong–Zakai approximations and random attractors for stochastic Ginzburg–Landau equations with a white noise. We first prove the existence of a pullback random attractor for the approximate equation under much weaker conditions than the original stochastic equation. In addition, when the stochastic Ginzburg–Landau equation is driven by an additive white noise, we establish the convergence of solutions of Wong–Zakai approximations and the upper semicontinuity of random attractors of the approximate random system as the size of approximation tends to zero.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.