Abstract
In analogy to Wong's equations describing the motion of a charged relativistic point particle in the presence of an external Yang-Mills field, we discuss the motion of such a particle in non-commutative space subject to an external $U_\star(1)$ gauge field. We conclude that the latter equations are only consistent in the case of a constant field strength. This formulation, which is based on an action written in Moyal space, provides a coarser level of description than full QED on non-commutative space. The results are compared with those obtained from the different Hamiltonian approaches. Furthermore, a continuum version for Wong's equations and for the motion of a particle in non-commutative space is derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.