Abstract
In this article, we combine machine learning techniques with statistical moments of the gasoline price distribution. By doing so, we aim to detect and predict cartels in the Brazilian retail market. In addition to the traditional variance screen, we evaluate how the standard deviation, coefficient of variation, skewness, and kurtosis can be useful features in identifying anti-competitive market behavior. We complement our discussion with the so-called confusion matrix and discuss the trade-offs related to false-positive and false-negative predictions. Our results show that in some cases, false-negative outcomes critically increase when the main objective is to minimize false-positive predictions. We offer a discussion regarding the pros and cons of our approach for antitrust authorities aiming at detecting and avoiding gasoline cartels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.