Abstract

The energetic cost of walking varies with mass and speed; however, the metabolic cost of carrying loads has not consistently increased proportionally to the mass carried. The cost of carrying mass, and the speed at which human walkers carry this mass, has been shown to vary with load position and load description (e.g. child vs. groceries). Additionally, the preponderance of women carriers around the world, and the tendency for certain kinds of population-level sexual dimorphism has led to the hypothesis that women might be more effective carriers than men. Here, I investigate the energetic cost and speed changes of women (N = 9) and men (N = 6) walking through the woods carrying their own babies (mean baby mass = 10.6 kg) in three different positions - on their front, side and back using the same Ergo fabric baby sling. People carrying their babies on their backs are able to maintain their unloaded walking speed (1.4 m/s) and show the lowest increase in metabolic cost per distance (J/m, 17.4%). Women carry the babies for a lower energetic cost than men at all conditions (p < 0.01). Further energetic and kinematic evidence elucidates the preponderance of back-carrying cross-culturally, and illustrates the importance of relatively wider bi-trochanteric breadths for reducing the energetic costs of carrying.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.