Abstract
Space agriculture, pivotal for sustainable extraterrestrial missions, requires plants that can adapt to altered gravitational conditions. This study delves into the adaptive responses to altered gravity of Wolffia globosa, an aquatic plant known for its rapid growth and high nutritional value. The research aimed to analyse the effect of simulated microgravity and hypergravity on relative growth rate (RGR), morphological characteristics, protein content, and the correlation between plant size and growth rate of Wolffia globosa. The study highlighted the responses of the species to altered gravity, uncovering inherent variability among seven different clones of W. globosa. Results show a base variability among clones in terms of RGR, size and protein content. Furthermore, some clones are affected by simulated microgravity, showing a decrease in RGR. Differently, under hypergravity, clones showed RGR higher than in 1g control, therefore revealing a novel plant response to hypergravity. Morphological adaptations to gravity alterations were also evident. Among the studied clones, significant morphological changes were observed, further underlining the peculiar adaptation to the hypergravity environment. Differently, under simulated microgravity, morphology was generally stable across clones. A key finding of the study was the significant negative correlation between RGR and the physical dimensions of the plants: the fastest growth was associated with the smallest dimensions of the plants. This correlation might have practical implications in selecting clones for space cultivation, that leads to compact yet highly productive clones. The analysis of the protein content of all the clones revealed mostly no significant changes under hypergravity. Otherwise, a general decrease in protein content was observed under simulated microgravity. Overall, the study confirms the suitability of W. globosa for space agriculture and provides new insights into the perspective of using W. globosa as an alternative crop species for protein production for manned Space missions. Furthermore, it underscores the need for focusing on the clones and the selection of the W. globosa plants that are best adapted to the environmental conditions of space; therefore, selecting those with the best combination of biomass production (by means of growth rate, size), and protein content.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.