Abstract
Releasing mosquitoes infected with the endosymbiotic bacterium Wolbachia to invade and replace the wild populations can effectively interrupt dengue transmission. Recently, a reasonable discrete competitive non-spatial model was developed and the conditions for the successful invasion of Wolbachia were given. However, Wolbachia propagation is a matter of spatial dynamics. In this paper, we introduce a dispersal kernel and establish integrodifference equations, a class of discrete-time spatial diffusion systems that have recently gained much attention as an important tool for spatial ecology. We analyzed the spatial model by average dispersal success approximation to find the criteria for the successful spread of Wolbachia, and then compared it with the non-spatial model to discuss the effect of spatial parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.