Abstract

Background Cardiac hypertrophy is one of the initial disorders of the cardiovascular system and can induce heart failure. Oxidative stress is an important pathophysiological mechanism of cardiac hypertrophy. Wogonin (Wog), an important flavonoid derived from the root of Scutellaria baicalensis Georgi, is known to possess antioxidant properties. Methods An in vitro model of cardiac hypertrophy was established by stimulating H9C2 cells and neonatal rat cardiomyocytes (NRCMs) with angiotensin II (AngII). The indices related to myocardial hypertrophy and oxidative stress were detected. An in vivo model of cardiac hypertrophy was induced by transverse aortic constriction (TAC) in C57BL/6 mice. Cardiac function was monitored by chest echocardiography, and the hypertrophy index was measured. The mice were then sacrificed for histological assays, with mRNA and protein detection. To further explore the role of nuclear factor- (erythroid-derived 2-) like 2 (Nrf-2) in regulating the antioxidant effects of Wog in cardiac hypertrophy, siRNA analysis was conducted. Results Our results showed that Wog significantly ameliorated AngII-induced cardiomyocyte hypertrophy by inhibiting oxidative stress in H9C2 cells and NRCMs. In addition, Wog treatment prevented oxidative stress and improved cardiac hypertrophy in mice that underwent TAC. Using gene-specific siRNA for Nrf-2, we discovered that these antioxidative effects of Wog are mediated through Nrf-2 induction. Conclusions Our results provide further evidence for the potential use of Wog as an antioxidative agent for treatment of cardiac hypertrophy, and Nrf-2 might serve as a therapeutic target in the treatment of cardiac hypertrophy.

Highlights

  • Cardiac hypertrophy is the abnormal enlargement of the heart muscle and a severe disorder of the cardiovascular system

  • The in vitro model of cardiac hypertrophy was established by stimulating H9C2 cells with angiotensin II (AngII), which led to significant cardiomyocyte hypertrophy and increased oxidative stress levels

  • Our results showed that Wog significantly attenuated AngII-induced cardiomyocyte hypertrophy and oxidative stress in H9C2 cells (Figures 1 and 2)

Read more

Summary

Introduction

Cardiac hypertrophy is the abnormal enlargement of the heart muscle and a severe disorder of the cardiovascular system. An in vitro model of cardiac hypertrophy was created by stimulating rat myocardial cells (H9C2) with AngII (1 μm). An in vitro model of cardiac hypertrophy was established by stimulating H9C2 cells and neonatal rat cardiomyocytes (NRCMs) with angiotensin II (AngII). To further explore the role of nuclear factor- (erythroid-derived 2-) like 2 (Nrf-2) in regulating the antioxidant effects of Wog in cardiac hypertrophy, siRNA analysis was conducted. Our results showed that Wog significantly ameliorated AngII-induced cardiomyocyte hypertrophy by inhibiting oxidative stress in H9C2 cells and NRCMs. In addition, Wog treatment prevented oxidative stress and improved cardiac hypertrophy in mice that underwent TAC. Our results provide further evidence for the potential use of Wog as an antioxidative agent for treatment of cardiac hypertrophy, and Nrf-2 might serve as a therapeutic target in the treatment of cardiac hypertrophy

Objectives
Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call