Abstract
Knowledge of adsorbed gas dynamics within microporous solids is crucial for the design of more efficient gas capture materials. We demonstrate that (17)O solid-state NMR (SSNMR) experiments allow one to obtain accurate information on CO2 dynamics within metal-organic frameworks (MOFs), using CPO-27-M (M = Mg, Zn) as examples. Variable-temperature (VT) (17)O SSNMR spectra acquired from 150 to 403 K yield key parameters defining the CO2 motions. VT (17)O SSNMR spectra of CPO-27-Zn indicate relatively weaker metal-oxygen binding and increased CO2 dynamics. (17)O SSNMR is a sensitive probe of CO2 dynamics due to the presence of both the quadrupolar and chemical shielding interactions, and holds potential for the investigation of motions within a variety of microporous materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.