Abstract

We prepared ZnO nanocomposites with WO3 or CuO nanostructures to improve the photocatalytic performance of ZnO nanostructures. Characterization of the nanocomposites using scanning electron microscopy, x-ray diffraction, UV–vis spectrometry and photoluminescence revealed the morphologies and wide light absorption range of the materials. The highest current densities of WO3/ZnO and CuO/ZnO nanocomposites were 1.28 mA cm−2 and 2.49 mA cm−2 at 1.23 V (versus a reversible hydrogen electrode) under AM 1.5 100 mW cm−2, which are ~1.2- and 3.5-fold greater than those of bare ZnO nanostructures, respectively. The easy fabrication process suggests that nanocomposites with narrow bandgap materials, such as WO3 and CuO, will improve the performance of electrochemical and optoelectrical devices such as dye-sensitized solar cells and biosensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.