Abstract

The efficient oxygen evolution reaction (OER) is crucial for various electrochemical processes, especially for overall water splitting (OWS). In this study, we focus on the utilization of WO3-x as an activation medium to enhance the OER performance of NiFe-based electrocatalysts. Firstly, we synthesize WO3-x nanowires supported on nickel foam (NF) and then incorporate NiFe on WO3-x nanowires by a simple hydrothermal method. The WO3-x self-supported NiFe (Oxy)hydroxide (denoted as NiFe-W-O/NF) shows a three-dimensional stereostructure composed of ultrathin nanosheets (∼ 4.0 nm). This unique structure provides a large open surface for fuller diffusion of the electrolyte while exposing more active sites. The electronic interaction of tri-centers of NiFeW accelerates the surface reconstruction process of γ-NiOOH and FeOOH, which are converted into the main active species in a short time. The electrochemical measurements confirm that the NiFe-W-O/NF has low OER overpotentials (233 mV at 10 mA cm−2, 298 mV at 100 mA cm−2) and excellent stability (100 h in total) in 1 M KOH electrolyte. In addition, the NiFe-W-O/NF || NiFe-W-O/NF battery also exhibits a low cell voltage (1.52 V at 10 mA cm−2) with a stable lifetime (50 h) under alkaline conditions. These results highlight the great potential of NiFe-W-O/NF for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.