Abstract

Three tungsten oxides (WO3-W1 to WO3-W3) with different morphologies were prepared and characterized by XRD, SEM, TEM and HR-TEM measurements. The as-synthesized tungsten oxides were screened as photocatalysts for visible-light-driven cross dehydrogenative coupling (CDC) reactions along with commercially available WO3-W4. Preliminary studies showed that WO3-W1 with hollow sphere morphology efficiently photocatalyzed oxidative CH functionalization as compared to other tested samples, by using molecular oxygen as a benign oxidant. The superior photocatalytic performance of WO3-W1 can be attributed to its larger surface area and pore structure which was supported by nitrogen adsorption-desorption measurements. Further, this protocol was used to synthesize α-functionalized tertiary amines in good to excellent yields by irradiating a mixture of WO3-W1, tertiary amine, and nucleophiles (nitromethane or ketones) to visible light under aerobic conditions. Moreover, WO3-W1 can be recycled and reused with no obvious change in catalytic activity, indicating that this is an environmentally friendly and economical protocol and also underlines the robustness of the catalysts in light mediated cross dehydrogenative coupling reactions. It is hoped that our results could offer useful information for designing of new heterogeneous semiconductors for photoredox catalytic organic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.