Abstract

BackgroundWnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow. The aminotermini of LRP and Fz were reported to associate only in the presence of Wnt, implying that Wnt ligands form a trimeric complex with two different receptors. However, it was recently reported that LRPs activate the Wnt/β-catenin pathway by binding to Axin in a Dishevelled – independent manner, while Fzs transduce Wnt signals through Dishevelled to stabilize β-catenin. Thus, it is possible that Wnt proteins form separate complexes with Fzs and LRPs, transducing Wnt signals separately, but converging downstream in the Wnt/β-catenin pathway. The question then arises whether both receptors are absolutely required to transduce Wnt signals.ResultsWe have established a sensitive luciferase reporter assay in Drosophila S2 cells to determine the level of Wg – stimulated signaling. We demonstrate here that Wg can synergize with DFz2 and function cooperatively with LRP to activate the β-catenin/Armadillo signaling pathway. Double-strand RNA interference that disrupts the synthesis of either receptor type dramatically impairs Wg signaling activity. Importantly, the pronounced synergistic effect of adding Wg and DFz2 is dependent on Arrow and Dishevelled. The synergy requires the cysteine-rich extracellular domain of DFz2, but not its carboxyterminus. Finally, mammalian LRP6 and its activated forms, which lack most of the extracellular domain of the protein, can activate the Wg signaling pathway and cooperate with Wg and DFz2 in S2 cells. We also show that the aminoterminus of LRP/Arr is required for the synergy between Wg and DFz2.ConclusionOur study indicates that Wg signal transduction in S2 cells depends on the function of both LRPs and DFz2, and the results are consistent with the proposal that Wnt/Wg signals through the aminoterminal domains of its dual receptors, activating target genes through Dishevelled.

Highlights

  • Wnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow

  • It was reported that two single-transmembrane proteins of the LDL-receptor-related proteins (LRP) family, LRP5 and LRP6, are involved in receiving the Wnt signal [7,8,9]

  • Genetic data from flies and mice indicate that Arr and LRP6 play a positive role in Wnt signaling [7,9]

Read more

Summary

Introduction

Wnt/Wingless (Wg) signals are transduced by seven-transmembrane Frizzleds (Fzs) and the single-transmembrane LDL-receptor-related proteins 5 or 6 (LRP5/6) or Arrow. It was recently reported that LRPs activate the Wnt/β-catenin pathway by binding to Axin in a Dishevelled – independent manner, while Fzs transduce Wnt signals through Dishevelled to stabilize β-catenin. It is possible that Wnt proteins form separate complexes with Fzs and LRPs, transducing Wnt signals separately, but converging downstream in the Wnt/β-catenin pathway. LRP6 has been reported to bind Wnt-1 and to associate with Fz in a Wnt-dependent manner [8] Taken together, these results support a coreceptor model: upon exposure to Wnts, LRP5 or LRP6 forms a complex with Wnt and Fzs, transducing the Wnt signal downstream to stabilize cytoplasmic β-catenin. Consistent with this, it has been demonstrated that Dickkopf-1 inhibits Wnt/β-catenin signaling by binding to LRP5 or LRP6 to prevent Wnt-receptor complex formation [10,11,12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call