Abstract
Wnt ligands belonging to both canonical and non-canonical Wnt pathways regulate membrane potential signifying a very early event in the signal transduction. Wnts activate K+ currents by elevating intracellular Ca2+ and trigger Ca2+ release from intracellular stores. Control of potential by Wnt ligands has significant implications for gene transcriptionand opens up a novel avenue to interfere with this critical pathway. The Wnt signalling network determines gene transcription with free intracellular Ca2+ ( ) and β-catenin as major intracellular signal transducers. Despite its critical importance during development and disease, many of the basic mechanisms of Wnt signal activation remain unclear. Here we show by single cell recording and simultaneous imaging in mammalian prostate cancer cells that an early step in the signal cascade is direct action on the cell membrane potential. We show that Wnt ligands 5A, 9B and 10B rapidly hyperpolarized the cells by activating K+ current by Ca2+ release from intracellular stores. Medium-throughput multi-well recordings showed responses to Wnts at concentrations of 2nm. We identify a putative target for early events as a TRPM channel. Wnts thus act as ligands for ion channel activation in mammalian cells and membrane potential is an early indicator of control of transcription.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.