Abstract
Wnt/β-catenin signaling plays a key role in maintaining homeostasis, which is disturbed in hypertension. Taking into account the lack of literature describing changes in the Wnt/β-catenin pathway in the adrenal glands under conditions of elevated arterial pressure, here we compare the expression of WNT4, WNT10A, β-catenin, and GSK-3β in the adrenal glands of hypertensive rats of various etiologies. The studies were carried out on the adrenal glands of rats with spontaneous hypertension (SHR), renalvascular (2K1C), and deoxycorticosterone acetate (DOCA)-salt. Immunohistochemical and PCR methods were used to identify the molecular components of the canonical signaling pathway and to evaluate gene expression. Immunoreactivity and expression of WNT4, WNT10A, β-catenin, and GSK-3β in adrenals of SHR was decreased, compared to control rats. In adrenals of 2K1C rats, intensity of immunohistochemical reaction and expression of WNT4 and β-catenin was lower, while immunoreactivity and expression of WNT10A and GSK-3β were higher, compared to normotensive animals. Significantly stronger immunoreaction and expression of WNT4, β-catenin and GSK-3β but weaker immunoreactivity and expression of WNT10A were noted in adrenals in DOCA-salt rats, compared to control rats. In conclusion, our data provide new molecular information indicating that the canonical WNT pathway is disrupted in the adrenal glands of hypertensive rats. They show that the dysregulation of the WNT pathway depends on the etiology of hypertension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.