Abstract

Cancer cachexia is a complex metabolic disease so far lacking effective therapy, and it accounts for approximately one third of all cancer-related deaths worldwide. The extracellular ligand Wnt7a has a dual function in skeletal muscle, inducing the anabolic AKT/mammalian target of rapamycin (mTOR) pathway in myofibers and driving muscle stem cell expansion in skeletal muscle, making it a promising candidate for treatment of muscle wasting diseases. In murine and human myotubes, Wnt7a activates the anabolic AKT/mTOR pathway, thereby preventing cachexia-induced atrophy with a single application being sufficient to prevent atrophy independently of the tumor cell type causing cachexia. Addition of Wnt7a also improved activation and differentiation of muscle stem cells in cancer cachexia, a condition under which skeletal muscle regeneration is severely impaired due to stalled muscle stem cell differentiation. Finally, we show that Wnt7a prevents cancer cachexia in an in vivo mouse model based on C26 colon carcinoma cells. Wnt7a has a dual role in cachectic skeletal muscle; that is, it effectively counteracts muscle wasting through activation of the anabolic AKT/mTOR pathway and, furthermore, reverts the loss of muscle stem cell functionality due to cancer cachexia, making Wnt7a a promising candidate for an ameliorative treatment of cancer cachexia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.