Abstract

BackgroundBushen Huoxue decoction (BHD) has a significant effect on fracture rehabilitation, yet its underlying mechanism is still unknown. The purpose of this study was to explore whether BHD promotes bone marrow mesenchymal stem cell (BMSC) migration through the Wnt5a signalling pathway.MethodsBHD was extracted by petroleum, and its composition was analysed. Cell viability in the presence of various concentrations of BHD for 24, 48 and 72 h was measured using a Cell Counting Kit-8 assay. Transwell assays and wound healing assays were used to observe the migration ability of BMSCs. Lentiviral vectors were used to knock down Wnt5a. Polymerase chain reaction and Western blot analyses were used to further compare Wnt5a signalling components at the mRNA and protein levels between groups.ResultsBHD treatment groups showed increased migration ability and Wnt5a expression. Knocking down Wnt5a using a lentivirus significantly inhibited the effects of BHD, which implies that BHD promotes BMSC migration ability through activation of Wnt5a.ConclusionsBHD can enhance BMSC migration, possibly by activating Wnt5a signalling.

Highlights

  • Bushen Huoxue decoction (BHD) has a significant effect on fracture rehabilitation, yet its underlying mechanism is still unknown

  • Indirect fracture healing is initiated by an immediate inflammatory response, which results in the recruitment of bone marrow mesenchymal stem cells (BMSCs) to

  • Analysis of the herbal formula: BHD chemical ingredients BHD extracted with petroleum ether was sent to the Chinese National Analytical Center, Guangzhou, and was analysed by gas chromatography–mass spectrometry (GC–MS)

Read more

Summary

Introduction

Bushen Huoxue decoction (BHD) has a significant effect on fracture rehabilitation, yet its underlying mechanism is still unknown. The purpose of this study was to explore whether BHD promotes bone marrow mesenchymal stem cell (BMSC) migration through the Wnt5a signalling pathway. Bone fracture can severely impact a patient’s quality of life. Many patients suffer from fractures, which are both costly and require extensive time to heal. Bone fracture healing is a remarkably complex repair process which is similar to the embryonic development [1]. Delayed union or poor fracture healing poses a serious threat to the quality of life of patients. Bone fractures are repaired by two mechanisms: direct and indirect bone repair. Indirect fracture healing is initiated by an immediate inflammatory response, which results in the recruitment of bone marrow mesenchymal stem cells (BMSCs) to

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call