Abstract

Anorectal malformations (ARM) represent a variety of congenital disorders that involve abnormal termination of the anorectum. Mutations in Shh signaling and Fgf10 produce a variety of ARM phenotypes. Wnt signaling has been shown to be crucial during gastrointestinal development. We therefore hypothesized that Wnt5a may play a role in anorectal development. Wild type (WT), Wnt5a(+/-) and Wnt5a(-/-) embryos were harvested from timed pregnant mice from E15.5 to E18.5, and analyzed for anorectal phenotype. Tissues were processed for whole-mount in situ hybridization and histology. Wnt5a is expressed in the embryonic WT colon and rectum. Wnt5a(-/-) mutants exhibit multiple deformities including anorectal malformation. A fistula between the urinary and intestinal tracts can be identified as early as E15.5. By E18.5, the majority of the Wnt5a(-/-) mutants display a blind-ending pouch of the distal gut. The expression pattern of Wnt5a and the ARM phenotype seen in Wnt5a(-/-) mutants demonstrate the critical role of Wnt5a during anorectal development. This study establishes a new model of ARM involving the Wnt5a pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.