Abstract
ObjectiveOsteoporosis (OP) is a common cause of morbidity and mortality in older individuals. The importance of Wnt3a in osteogenic activity and bone tissue homeostasis is well known. Here, we explored the possible molecular mechanism by which Wnt3a mediates the LRP6/mTORC1/β-catenin axis to regulate osteoblast differentiation in OP. MethodsOP-related key genes were identified through a bioinformatics analysis. A ROS17/2.8 cell differentiation system for rat osteogenic progenitors and a rat model of senile OP were constructed for in vitro and in vivo mechanism verification. ResultsBioinformatics analysis revealed that LRP6 was poorly expressed in OP and may play a key role in the occurrence of OP by affecting osteoblast differentiation. LRP6 knockdown inhibited osteoblast differentiation in an in vitro model. In addition, Wnt3a promoted osteoblast differentiation by inducing LRP6 phosphorylation. Moreover, LRP6 promoted mTORC1 expression, which indirectly promoted β-catenin expression, thus promoting osteoblast differentiation. Finally, an in vivo assay revealed that LRP6 inhibition improved OP. ConclusionOur study provides evidence that Wnt3a induces phosphorylation of LRP6 to activate the mTORC1/β-catenin axis, thus promoting osteoblast differentiation and ultimately improving OP in aged rats.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.