Abstract
The c-myb proto-oncogene product (c-Myb) regulates both the proliferation and apoptosis of hematopoietic cells by inducing the transcription of a group of target genes. However, the biologically relevant molecular mechanisms that regulate c-Myb activity remain unclear. Here we report that c-Myb protein is phosphorylated and degraded by Wnt-1 signal via the pathway involving TAK1 (TGF-beta-activated kinase), HIPK2 (homeodomain-interacting protein kinase 2), and NLK (Nemo-like kinase). Wnt-1 signal causes the nuclear entry of TAK1, which then activates HIPK2 and the mitogen-activated protein (MAP) kinase-like kinase NLK. NLK binds directly to c-Myb together with HIPK2, which results in the phosphorylation of c-Myb at multiple sites, followed by its ubiquitination and proteasome-dependent degradation. Furthermore, overexpression of NLK in M1 cells abrogates the ability of c-Myb to maintain the undifferentiated state of these cells. The down-regulation of Myb by Wnt-1 signal may play an important role in a variety of developmental steps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.