Abstract

The Wingless (Wg) pathway represents one of the best-characterized intercellular signaling networks. Studies performed in Drosophila over the last 30 years have contributed to our understanding of the role of Wg signaling in the regulation of tissue growth, polarity, and patterning. These studies have revealed mechanisms conserved in the vertebrate Wnt pathways and illustrate the elegance of using the Drosophila model to understand evolutionarily conserved modes of gene regulation. In this article, we describe the function of Wg signaling in patterning the Drosophila embryonic epidermis and wing imaginal disc. As well, we present an overview of the establishment of the Wg morphogen gradient and discuss the differential modes of Wg-regulated gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.