Abstract

The breast epithelium comprises cells at different stages of differentiation, including stem cells, progenitor cells, and more differentiated epithelial and myoepithelial cells. Wnt signaling plays a critical role in regulating stem/progenitor cells in the mammary gland as well as other tissue compartments. Furthermore, there is strong evidence suggesting that aberrant activation of Wnt signaling induces mammary tumors from stem/progenitor cells, and that Wnt exerts its oncogenic effects through LRP5/6-mediated activation of beta-catenin and mTOR pathways. Recent studies using avian retrovirus-mediated introduction of oncogenes into a small subset of somatic mammary cells suggest that polyoma middle T antigen (PyMT) may also preferentially transform stem/progenitor cells. These observations suggest that stem/progenitor cells in the mammary gland may be especially susceptible to oncogenic transformation. Whether more differentiated cells may also be transformed by particular oncogenes is actively debated; it is presently unclear whether stem cells or differentiated mammary cells are more susceptible to transformation by individual oncogenes. Better stem cell and progenitor cell markers as well as the ability to specifically target oncogenes into different mammary cell types will be needed to determine the spectrum of oncogene transformation for stem cells versus more differentiated cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.