Abstract

WNT signaling in microglia and the glioma microenvironment Gunnar Schulte WNT signaling is important during embryonic development and organogenesis having specific roles in the development of the CNS such as regulation of neural tube formation, axon guidance and CNS stem cell regulation. Our work has recently established a role of WNT signaling in the regulation of the brain’s macrophages, the microglia and thus WNTs emerge as novel regulators of CNS inflammatory responses. First of all, it appeared that b-catenin levels are elevated in microglia in Alzheimer disease (AD) brains as well as microglia cells in AD mouse models. Employing in vitro studies of primary mouse microglia isolated from newborn mouse pups indicated that both WNT-3A and WNT-5A induce diverse signaling routes in microglia leading to differential proinflammatory modulation of the cells. Interestingly, the net effect of WNT stimulation on the inflammatory potential of mouse microglia is context dependent. While WNTs increase inflammatory markers when giving to microglia alone, they are able to act in an anti-inflammatory manner when microglia are activated by prestimulation with lipopolysaccharides. Our findings thereby indicate that WNTs act on microglia as a homeostatic regulator, further underlined by yet unpublished data that suggest that WNT-5A is elevated in human glioma associated with a distinct inflammatory signature of the tumor as well as a substantial invasion of microglia.

Highlights

  • Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia

  • The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression

  • No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.