Abstract

Biliary obstruction and cholangiocyte hyperproliferation are important features of cholangiopathies affecting the large extrahepatic bile duct (EHBD). The mechanisms underlying obstruction-induced cholangiocyte proliferation in the EHBD remain poorly understood. Developmental pathways, including WNT signaling, are implicated in regulating injury responses in many tissues, including the liver. To investigate the contribution of WNT signaling to obstruction-induced cholangiocyte proliferation in the EHBD, we used complementary in vivo and in vitro models with pharmacologic interventions and transcriptomic analyses. To model obstruction, we used bile duct ligation (BDL) in mice. Human and mouse biliary organoids and mouse biliary explants were used to investigate the effects of WNT activation and inhibition in vitro. We observed an upregulation of WNT ligand expression associated with increased biliary proliferation following obstruction. Cholangiocytes were identified as both WNT ligand-expressing and WNT responsive cells. Inhibition of WNT signaling decreased cholangiocyte proliferation in vivo and in vitro, while activation increased proliferation. WNT effects on cholangiocyte proliferation were β-catenin-dependent, and we showed a direct effect of WNT7B on cholangiocyte growth. Our studies suggested that cholangiocyte-derived WNT ligands can activate WNT signaling to induce proliferation after obstructive injury. These findings implicated the WNT pathway in injury-induced cholangiocyte proliferation within the EHBD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.