Abstract
Background and aimsWNT signaling is central to spatial tissue arrangement, regulating stem cell activity, and represents the hallmark of gastrointestinal cancers. While its role in driving intestinal tumors is well characterized, WNT's role in gastric tumorigenesis remains elusive. MethodsWe have developed mouse models to control the specific expression of an oncogenic form of B-CATENIN in combination with MYC activation in Lgr5+ cells of the gastric antrum. We used multi-omics approaches applied in vivo and in organoid models to characterize their cooperation in driving gastric tumorigenesis. ResultsWe report that constitutive B-CATENIN stabilization in the stomach has negligible oncogenic effects and requires MYC activation to induce gastric tumour formation. While physiologically low MYC levels in gastric glands limit B-CATENIN transcriptional activity, increased MYC expression unleashes the WNT oncogenic transcriptional program, promoting B-CATENIN enhancer invasion without a direct transcriptional cooperation. MYC activation induces a metabolic rewiring that suppresses lysosomal biogenesis through mTOR and ERK activation and MiT/TFE inhibition. This prevents EPCAM degradation by macropinocytosis, promoting B-CATENIN chromatin accumulation and activation of WNT oncogenic transcription. ConclusionOur results uncovered a new signaling framework with important implications for the control of gastric epithelial architecture and WNT-dependent oncogenic transformation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.