Abstract

Mouse F9 cells differentiate into primitive extraembryonic endoderm (PrE) when treated with retinoic acid (RA), and this is accompanied by an up-regulation of Gata6. The role of the GATA6 network in PrE differentiation is known, and we have shown it directly activates Wnt6. Canonical Wnt/β-catenin signaling is required by F9 cells to differentiate to PrE, and this, like most developmental processes, requires input from one or more additional pathways. We found both RA and Gata6 overexpression, can induce the expression of Indian Hedgehog (Ihh) and a subset of its target genes through Gli activation during PrE induction. Chemical activation of the Hh pathway using a Smoothened agonist (SAG) also increased Gli reporter activity, and as expected, when Hh signaling was blocked with a Smoothened antagonist, cyclopamine, this RA-induced reporter activity was reduced. Interestingly, SAG alone failed to induce markers of PrE differentiation, and had no effect on Wnt/β-catenin-dependent TCF-LEF reporter activity. The expected increase in Wnt/β-catenin-dependent TCF-LEF reporter activity and PrE markers induced by RA was, however, blocked by cyclopamine. Finally, inhibiting GSK3 activity with BIO increased both TCF-LEF and Gli reporter activities. Together, we demonstrate the involvement of Hh signaling in the RA-induced differentiation of F9 cells into PrE, and while the activation of the Hh pathway itself is not sufficient, it as well as active Wnt/β-catenin are necessary for F9 cell differentiation.

Highlights

  • The mouse blastocyst is comprised of three cell types in preparation for implantation: (1) trophectoderm; (2) pluripotent cells of the inner cell mass; (3) and primitive endoderm (PrE), the initial cell type in the extraembryonic endoderm (ExE) lineage (Kelly and Drysdale, 2015)

  • retinoic acid (RA) signaling in F9 cells increases WNT6 activity, which leads to the stabilization of β-catenin, and in conjunction with T-cell factors (TCF)-lymphoid-enhancing factors (LEF), leads to the regulation of genes required for PrE formation (Krawetz and Kelly, 2009)

  • F9 cells treated with RA differentiate into PrE, and this is accompanied by an increase in Indian Hedgehog (Ihh) expression (Becker et al, 1997)

Read more

Summary

Introduction

The mouse blastocyst is comprised of three cell types in preparation for implantation: (1) trophectoderm; (2) pluripotent cells of the inner cell mass; (3) and primitive endoderm (PrE), the initial cell type in the extraembryonic endoderm (ExE) lineage (Kelly and Drysdale, 2015). RA signaling in F9 cells increases WNT6 activity, which leads to the stabilization of β-catenin, and in conjunction with TCF-LEF, leads to the regulation of genes required for PrE formation (Krawetz and Kelly, 2009). These results underpin the importance of Wnt signaling in PrE differentiation, other pathways including Hedgehog (Hh) are involved (Becker et al, 1997)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.