Abstract
Wireless sensor networks (WSNs) are currently being used for monitoring and control in smart grids. To ensure the quality of service (QoS) requirements of smart grid applications, WSNs need to provide specific reliability guarantees. Real-time link quality estimation (LQE) is essential for improving the reliability of WSN protocols. However, many state-of-the-art LQE methods produce numerical estimates that are suitable neither for describing the dynamic random features of radio links nor for determining whether the reliability satisfies the requirements of smart grid communication standards. This paper proposes a wavelet-neural-network-based LQE (WNN-LQE) algorithm that closes the gap between the QoS requirements of smart grids and the features of radio links by estimating the probability-guaranteed limits on the packet reception ratio (PRR). In our algorithm, the signal-to-noise ratio (SNR) is used as the link quality metric. The SNR is approximately decomposed into two components: a time-varying nonlinear part and a non-stationary random part. Each component is separately processed before it is input into the WNN model. The probability-guaranteed limits on the SNR are obtained from the WNN-LQE algorithm and are then transformed into estimated limits on the PRR via the mapping function between the SNR and PRR. Comparative experimental results are presented to demonstrate the validity and effectiveness of the proposed LQE algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.